Logarithmically Improved Criteria for Euler and Navier-Stokes Equations

نویسندگان

  • Yi Zhou
  • Zhen Lei
چکیده

In this paper we prove the logarithmically improved Beale-Kato-Majda's criterion to the three-dimensional incompressible Euler and Navier-Stokes equations as well as the logarithmically improved Serrin's criteria to the three-dimensional incompressible Navier-Stokes equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmically Improved Serrin’s Criteria for Navier-Stokes Equations

In this paper we prove the logarithmically improved Serrin’s criteria to the three-dimensional incompressible Navier-Stokes equations.

متن کامل

Logarithmically Improved Blow-up Criteria for the 3d Nonhomogeneous Incompressible Navier-stokes Equations with Vacuum

This article is devoted to the study of the nonhomogeneous incompressible Navier-Stokes equations in space dimension three. By making use of the “weakly nonlinear” energy estimate approach introduced by Lei and Zhou in [16], we establish two logarithmically improved blow-up criteria of the strong or smooth solutions subject to vacuum for the 3D nonhomogeneous incompressible Navier-Stokes equati...

متن کامل

On the Dynamics of Navier-Stokes and Euler Equations

This is a rather comprehensive study on the dynamics of NavierStokes and Euler equations via a combination of analysis and numerics. We focus upon two main aspects: (a). zero viscosity limit of the spectra of linear Navier-Stokes operator, (b). heteroclinics conjecture for Euler equation, its numerical verification, Melnikov integral, and simulation and control of chaos. Besides Navier-Stokes a...

متن کامل

1 5 N ov 2 00 7 Global regularity for the 3 D Navier - Stokes and the 3 D Euler equations

We prove the global regularity for both of the 3D Navier-Stokes equations and the 3D Euler equations on R for initial data v0 ∈ H (R). 1 Main Result We are concerned on the following Navier-Stokes equations(Euler equations for ν = 0) describing the homogeneous incompressible fluid flows in R. (NS)ν 

متن کامل

The 2d Boussinesq-navier-stokes Equations with Logarithmically Supercritical Dissipation

This paper studies the global well-posedness of the initial-value problem for the 2D Boussinesq-Navier-Stokes equations with dissipation given by an operator L that can be defined through both an integral kernel and a Fourier multiplier. When the symbol of L is represented by |ξ| a(|ξ|) with a satisfying lim|ξ|→∞ a(|ξ|) |ξ|σ = 0 for any σ > 0, we obtain the global well-posedness. A special cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008